EL SISTEMA IRRIGACIÓN SANGUÍNEA DE LA PIEL Y EL EFECTO DEL CAFÉ

EL SISTEMA DE IRRIGACIÓN SANGUÍNEA DE LA PIEL Y EL EFECTO DEL CAFÉ. UN ARTÍCULO ESCRITO POR LOS INGENIEROS QUÍMICOS CARLOS MANUEL GÓMEZ ODIO Y ANACATALINA SOTO ARAYA PARA EL DEPARTAMENTO DE MERCADEO CIENTÍFICO DE PRODUCTOS TERAPÉUTICO MARINOS S.A. LOS COSMÉTICOS DE CAFÉ ALIMENTANDO A LA PIEL. MECAMISMO DE TRANSPORTE DEL COMPLEJO VITAMÍNICO. La sangre está contenida en el cuerpo en cantidad de unos 5 a 6 litros. Se encuentra compuesta por una parte líquida y una sólida, que son las células sanguíneas.
Se calcula que en un milímetro de sangre hay de cuatro a cinco millones de hematíes o glóbulos rojos; de 6 mil quinientos a 7 mil leucocitos o glóbulos blancos, y de 200 a 300 mil plaquetas o trombocitos.La sangre transporta oxígeno y sustancias nutritivas a las células y recoge los productos de desecho, como el dióxido de carbono. Cada célula tiene sus propias necesidades de alimento y energía, que han de ser satisfechas por un sistema de abastecimiento común. Las células precisan de oxígeno y alimento, proporcionados por la sangre, que tiene que llegar a cada parte del cuerpo a la presión adecuada, ya que si es muy baja estos nutrientes no podrán llegar a su destino, y si es muy alta se corre el riesgo incluso de dañar a las células que debe nutrir. La nutrición de la piel está acargo de la sangre através del sistema sanguíneo a través de sus vasos y capilares.

CIRCULACION PERIFERICA

La sangre que fluye por los vasos relaciona, como hemos dicho, el medio externo con nuestro medio interno y participa en la coordinación de las funciones de los diversos órganos. Cumple, además, un importante papel en la termorregulación. La circulación provee de sangre al organismo entero y su cuantía varía en forma directamente proporcional al estado funcional de los órganos. Las características genéticamente determinadas del sistema circulatorio le permiten cumplir con estas múltiples funciones. Los vasos sanguíneos son tubos de comunicación y están en íntima relación con el corazón que es la bomba muscular propulsora que mantiene la sangre en constante movimiento. Debido a las propiedades del corazón y de los vasos y a su capacidad de modificar su actividad por la acción moduladora de factores nerviosos, químicos y hormonales, la circulación se adapta, dentro de límites muy amplios, a los requerimientos siempre cambiantes del organismo. Esta capacidad de adaptación es el resultado de la evolución del sistema circulatorio en el curso de la filogénesis.

Los capilaresasos de paredes muy finas, que comunican las arterias con las venas. Se caracterizan por el intercambio de sustancias entre sangre y tejidosLa función principal de los capilares es el intercambio de sustancias entre la luz de los capilares y el intersticio celular de los tejidos. Solo el 5% de la sangre se encuentra en la circulación capilar y con un volumen tan pequeño de sangre se asegura la función de intercambio de sustancias. Estas sustancias son nutrientes, gases y productos finales del metabolismo celular.
La función de intercambio varía según la estructura del endotelio, dependiendo de si es continuo o fenestrado.
El intercambio de sustancias entre el interior de los capilares y el intersticio celular de los tejidos se favorece por la sección máxima en los capilares con respecto a todo el sistema circulatorio y la velocidad mínima de la sangre que los recorre.
El flujo de sangre de los capilares viene regulado por las arteriolas que presentan musculatura en su pared, mediante vasoconstricción o vasodilatación.
Los tres mecanismos que regulan el intercambio de sustancias son:

  • Sistema de transportadores celulares: Que generalmente funcionan a costa de energía metabólica, seleccionan qué sustancias se intercambian entre la luz del capilar y el intersticio celular.
  • Difusión: Basada en la diferencia en el gradiente de concentraciones que va del medio más concentrado al menos concentrado. Los mecanismos de difusión funcionan extremadamente bien con moléculas liposolubles ya que pueden atravesar las membranas como por ejemplo el oxígeno y el anhidrido carbónico. Las moléculas más hidrosolubles necesitan canales situados en las membranas y pasan a través de mecanismos de difusión. Es muy importante el peso molecular de la sustancia para la permeabilidad por lo que a más peso molecular, menos permeabilidad.

La composición del plasma y líquido intersticial es básicamente la misma. Se diferencian en la cantidad de proteínas que es de unos 16 mEq/litro en el plasma y solo 2 mEq/litro en el líquido intersticial, porque las proteínas no atraviesan los capilares. Cuando se renueva el líquido intersticial, se renueva el líquido en contacto con la célula.Cuanto más impermeable sea es el endotelio más transporte se produce y, cuanto más permeable, más difusiónEs de capital importancia para la célula poder transportar moléculas hacia afuera y adentro de ella misma.
Imagine una proteína que tiene múltiples dominios transmembrana (la atraviesan) y dispone los mismos en circulo formando un cilindro o mejor un barril, que visto desde afuera, muestra cada uno de los dominios, equivalentes a un listón del barril.
El “centro” de este barril conforma un agujero en la membrana plasmática, aislado de la misma por un arreglo de dominios de transmembrana alrededor de él. Este agujero puede ser utilizado para transportar substancias hacia adentro o afuera de la célula.
Este agujero puede ser hidrofílico si cadenas laterales hidrofílicas de las proteínas que lo rodean protruyen hacia él.
En la practica , para una proteína de membrana de estructura conocida, estos agujeros solo son lo suficientemente grandes para dejar pasar por la membrana plasmática moléculas pequeñas tales como H+, K+ o Na+.
Estos iones pueden pasar por el orificio por difusión pasiva, en cuyo caso la proteína que permite el paso conforma un “canal iónico”. En otros casos la proteína de membrana necesita invertir energía (generalmente derivada de ATP), para forzar el paso del ion de un lado al otro de la membrana, en ese caso conforma una “bomba de iones”.
Dado la importancia del transporte a través de la membrana la célula utiliza un gran numero de mecanismos de transporte. Estos mecanismos caen dentro de una de estas tres categorías: difusión simple, difusión facilitada, y transporte activo.A coninuación, se muestran las vitaminas del café hecho con café en grano, una de las bebidas pertenecientes a la categoría de de los cafés y las infusiones :

Nutriente Cantidad Nutriente Cantidad
Ácido fólico añadido 0 ug. Vitamina A 1 ug.
Alfa caroteno 0 ug. Vitamina B1 0,07 mg.
Alfatocoferol 0 mg. Vitamina B12 0 ug.
Beta caroteno 0 ug. Vitamina B2 0,18 mg.
Beta criptoxantina 0 ug. Vitamina B3 13 mg.
Betacaroteno 0 ug. Vitamina B5 0,23 ug.
Betatocoferol 0 mg. Vitamina B6 0,14 mg.
Caroteno 6 ug. Vitamina B7 0 ug.
Deltatocoferol 0 mg. Vitamina B9 22 ug.
Folatos alimentarios 22 ug. Vitamina C 0 mg.
Gammatocoferol 0 mg. Vitamina D 0 ug.
Niacina preformada 13 mg. Vitamina E 2,70 mg.
Retinol 0 ug. Vitamina K 10 ug.
Tocoferoles totales 0 mg

Difusión

Difusión simple , significa que la molécula puede pasar directamente a través de la membrana. La difusión es siempre a favor de un gradiente de concentración. Esto limita la máxima concentración posible en el interior de la célula (o en el exterior si se trata de un producto de desecho).
La efectividad de la difusión está limitada por la velocidad de difusión de la molécula.
Por lo tanto si bien la difusión es un mecanismo de transporte suficientemente efectivo para alguna moléculas (por ejemplo el agua), la célula debe utilizar otros mecanismo de transporte para sus necesidades.

Difusión facilitada

La difusión facilitada utiliza canales (formados por proteínas de membrana) para permitir que moléculas cargadas (que de otra manera no podrían atravesar la membrana) difundan libremente hacia afuera y adentro de la célula. Estos canales son usados sobre todo por iones pequeños tales como K+, Na+, Cl-.
La velocidad del transporte facilitado esta limitado por el numero de canales disponibles (ver que la curva indica una “saturación”) mientras que la velocidad de difusión depende solo del gradiente de concentración.

Transporte activo

El transporte activo requiere un gasto de energía para transportar la molécula de un lado al otro de la membrana, pero el transporte activo es el único que puede transportar moléculas contra un gradiente de concentración, al igual que la difusión facilitada el transporte activo esta limitado por el numero de proteínas transportadoras presentes.
Son de interés dos grandes categorías de transporte activo, primario y secundario. El transporte activo primario usa energía (generalmente obtenida de la hidrólisis de ATP), a nivel de la misma proteína de membrana produciendo un cambio conformacional que resulta en el transporte de una molécula a través de la proteína.

El ejemplo mas conocido es la bomba de Na+/K+. La bomba de Na+/K+ realiza un contratransporte(“antyport”) transporta K+ al interior de la célula y Na+ al exterior de la misma, al mismo tiempo, gastando en el proceso ATP.
El transporte activo secundario utiliza la energía para establecer un gradiente a través de la membrana celular, y luego utiliza ese gradiente para transportar una molécula de interés contra su gradiente de concentración.
Un ejemplo de ese mecanismo es el siguiente: Escherichia coli establece un gradiente de protones (H+) entre ambos lados de la membrana utilizando energía para bombear protones hacia afuera de la célula. Luego estos protones se acoplan a la lactosa (un azúcar que sirve de nutriente al microorganismo) a nivel de la lactosa-permeasa (otra proteína de transmembrana), la lactosa permeasa usa la energía del protón moviéndose a favor de su gradiente de concentración para transportar la lactosa dentro de la célula.

Los vasos sanguíneos se hacen cada vez más finos a medida que se van ramificando en el cuerpo. Formados por una sola capa de células, la endotelial, esta red, por su extrema delgadez, facilita su función de intercambio gaseoso entre la sangre y los tejidos o entre la sangre y el aire que ha penetrado en los pulmones.

En la entrada de estos pequeños tejidos hay unas franjas que se distienden o contraen para permitir o impedir el paso de la sangre. En todo el cuerpo se estima que hay más de 60 mil kilómetros de ellos, siendo el punto más lejano del viaje que hace la sangre, y el lugar de aprovisionamiento de todos los tejidos y órganos, porque cada una de las células del cuerpo está a menos de 0,2 milímetro de un capilar. PARA MAYORES DETALLES ESCRIBA A PAPELERA SANTA ROSA. http://www.santarosapapelbanano.jimdo.com/ SEA CONSCIENTE,CONSUMA RESPONSABLEMENTE.

About these ads
Esta entrada fue publicada en Uncategorized. Guarda el enlace permanente.

Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s