LA QUÍMICA DEL MAÍZ. II PARTE.

LA QUÍMICA DEL MAÍZ . II PARTE.

I. PARTE .Publicado el junio 28, 2013 de santarosapapelbanano
LA QUÍMICA DEL MAÍZ. Escrito por el ingeniero químico Carlos Manuel Gómez Odio. En el cultivo del maíz, al igual que los otros cereales su disponibilidad depende de la época de la cosecha. Cosa que no encontramos en la producción de banano ni en el de la piña. Por lo tanto su dependencia está sujeta a los almacenajes, los cuales surten racionalmente a la demanda. Este almacenaje, también estimula los diferentes procesos para la conservación. Desde las conservas al vacío, hasta las galletas deshidratadas. También los procesos papeleros utilizando la paja para calentar los secadores y reactores, como a la vez producir el papel que puede ser utilizado en los diferentes empaques y embalajes para la cosecha. Es así como entramos a los productos alimenticios de diferente formulación, como también el los procesos químicos de la celulosa, desde el papel a los acetatos y mas derivaciones. Empecemos viendo que 1.-Las partes principales del grano de maíz difieren considerablemente en su
composición química. La cubierta seminal o pericarpio se caracteriza por un elevado
contenido de .-1.- fibra cruda, aproximadamente el 87%, la que a su vez está formada
fundamentalmente por .- 2.- hemicelulosa (67%),.-3.- celulosa (23%) y .-4.-lignina (0,15%) (Burga y
Duensing, 1989). El endospermo, en cambio, contiene un nivel elevado de .-5.- almidón
(87%), aproximadamente.-6.- 8% de proteínas y un contenido de .-7.- grasas crudas
relativamente bajo.
.-8.- La vitamina E,.-9.- la provitamina A y el.-10.- betacaroteno como vitaminas soluble en agua se encuentran presentes en el maíz amarillo. De hecho esta variedad de maíz es una alta fuente de .-11.- provitamina A. Los minerales en una proporción del 78% se encuentran presentes en el germen del grano, siendo el.-12.- ácido fítico,.-12.- el magnesio,.-13.- el potasio y.-14.- el fósforo los más abundantes en conjunto con.-15.- el azufre formando parte de la .-16.- isteína y la.-17.- metionina, .-18.- dos aminoácidos.el contenido de .-19.-aminoácidos de las proteínas del germen difiere
radicalmente del de las.-20.- proteínas del endospermo. Por otro lado, el endospermo
representa del 70 al 86% del peso del grano, y el.-21.- germen del 7 al 22%. Así pues, si se
analiza todo el grano, el contenido de.-22.- aminoácidos esenciales refleja el contenido de
aminoácidos de las proteínas del endospermo, pese a que la configuración de éstos
en el caso del germen es más elevada y mejor equilibrada. El germen aporta
pequeñas cantidades de.-23.- lisina y .-24.-triptófano.El grano maduro contiene pequeñas cantidades de otros hidratos de carbono, ademásde almidón. El total de .- 25.- azúcares del grano varía entre el 1 y el 3 por ciento, y la.-26.-sucrosa, el elemento más importante, se halla esencialmente en el germen. En losgranos en vías de maduración hay niveles más elevados de.-27.- monosacáridos,.-28.-disacáridos y.-29.- trisacáridos.El grano de maíz contiene dos vitaminas solubles en grasa, la .-30.-provitamina A, o.-31.-carotenoide, y la.-32.- vitamina E. Los .-33.- carotenoides se hallan sobre todo en el maíz amarillo, en cantidades que pueden ser reguladas genéticamente, en tanto que el maíz blanco tiene un escaso o nulo contenido de ellos. La mayoría de los carotenoides se encuentran en el endospermo duro del grano y únicamente pequeñas cantidades en el germen. El .-34.- beta-caroteno es una fuente importante de vitamina A, aunque no totalmente aprovechada pues los seres humanos no consumen tanto maíz amarillo como maíz blanco. Las .-35.-proteínas solubles en alcohol aumentan velozmente a medida que madura el grano, al tiempo que disminuyen las solubles en soluciones ácidas y alcalinas. Durante este proceso bioquímico, aumentan .-36.- la arginina,.-37.- la isoleucina, .-38.-la leucina y la .-39.-fenilalanina, expresadas en mg por g de.-40.- N, mientras que en el curso de la maduracióndisminuyen la .-41.- lisina,.-42.- la metionina y .-43.-el triptófano.

La Producción de los Cereales y Jarabes. El jarabe de maíz es un edulcorante líquido, creado a partir del almidón o fécula de maíz. El proceso para la producción de jarabe de maíz de alta fructosa (JMAF) fue descubierto por investigadores japoneses en la década 70 del siglo XX y su consumo se ha extendido a todo el mundo. En un principio se extendió particularmente en Estados Unidos y Canadá, países que han venido limitando su dependencia del azúcar de la caña o sacarosa proveniente de los países tropicales en más de un 35% (1994.)
Al incrementarse la producción de.-44.- fructosa se obtiene un almíbar comparable a las características de la .-45.-sacarosa en un radio extendido entre la fructosa y la.-46.-glucosa en su dulzura. Este proceso ha sido el mejor sustituto para aquellas empresas dedicadas a las bebidas ligeras y los comestibles

Primero, el almidón obtenido del maíz es calentado en forma de leche, es hidrolizado a .-47.-.-48.-dextrina mediante licuación enzimática .-48.- (amilasa) y luego hidrolizado a.-49.- glucosa por medio de la enzima sacarasa .-49.-(glucoamilasa) de forma tal que se rompan las moléculas con la ayuda de dichas -.50.- enzimas.
Segundo, el jarabe de glucosa resultante es tamizado por filtración para eliminar impurezas que se le hayan pegado en el proceso, es purificado a través de un filtro de carbono para decoloración, se filtra nuevamente por un proceso de refinado y el jarabe de glucosa es concentrado por proceso de evaporación.
Tercero, el jarabe de glucosa -decolorado y concentrado- es llevado dentro de un reactor de isomerización que contiene.-51.- enzimas isomerasa. Alrededor de la mitad del jarabe de .-52.-glucosa es isomerizada a.-53.- fructosa. Luego el jarabe isomerizado es refinado y concentrado hasta obtener un jarabe de fructosa con un contenido del 42% de fructosa.
Y finalmente, el jarabe de fructosa en concentración de 42% es separado, para luego ser mezclado con un jarabe de fructosa al 80-90% de concentración para obtener un jarabe de fructosa al 55% de concentración. La.-54.- sacarosa es un.-55.- disacárido formado por la unión deglucosa y fructosa, y el jarabe de maíz (HFCS) puede tener contenidos de fructosa mayores o superiores a la.-56.- sacarosa con diferencias en su dulzura. Visto comparativamente, en el jarabe de maíz prima la fructosa sobre la glucosa, obteniendo una ventaja sobre la sacarosa que en el sistema digestivo es descompuesta en fructosa y glucosa en partes iguales a través de un proceso de hidrólisis por enzimas sacarosas. Dada la asociación de la glucosa con la (diabetes,) los bajos niveles de glucosa serían recomendable.
.-57.-La miel es otro producto que es un mezcla de diferentes tipos de azúcares,.- 58.-agua y pequeñas cantidades de otros componentes. La miel típica contiene fructosa y glucosa similar al jarabe de maíz, más otros azúcares como la sacarosa y otros. En el proceso industrial de elaboración de “corn flakes”, los “flaking grits” se cocinan a presión durante 1 a 2 hr. en jarabe de sacarosa, malta y sal para ablandarlos. Una vez secados, se procede al laminado en rodillos de acero inoxidable. Así, se obtienen las hojuelas que a continuación se tuestan en un horno a alta temperatura (300º C durante 50 seg), donde se desecan y ampollan; dando los copos de maíz de color marrón dorado (Fast, 2000) que pueden o no ser saborizados antes del empaque comercial. El ablandamiento del “grit” es el resultado de la .-59.-gelatinización del almidón, que se alcanza cuando los .-60.-gránulos amiláceos son calentados en agua (cocción) a una temperatura de 65-77º C. De esta manera, se les aporta la energía que se requiere para la transición del almidón de un estado ordenado a otro desordenado (Hoseney, 1986). Esa cantidad de energía (entalpía) y la temperatura a la cual se inicia la gelatinización dependen de las propiedades térmicas del almidón, determinadas por el contenido de.-58.- amilosa del grano (Seetharam y col., 2001). Un menor valor de ambas variables reduce notablemente los costos energéticos en la cocción de “corn flakes”.La composición bioquímica del.-59.- endosperma del grano (contenido relativo de .-51.- zeínas y almidón) es una característica heredable (Eyhérabide y col., 1996), pero modificable por las condiciones del ambiente y el manejo agronómico (Borrás y col., 2002; Cirilo y col., 2003). Estas variables pueden afectar la calidad del grano usado como materia prima en la molienda seca y en la elaboración de “corn flakes”, alterando el rendimiento de “flaking grits” y modificando las propiedades térmicas del almidón, respectivamente. Por lo tanto, es factible identificar áreas y técnicas de producción de.-61.- maíces colorados duros que garanticen granos de calidad para esta industria. Sin embargo, no existe información referida a la influencia del ambiente de producción, sobre la composición bioquímica del.-62.- endosperma y su efecto en el rendimiento de “flaking grits” y las propiedades térmicas del almidón. Se desconoce, también, la incidencia de estrategias de manejo del cultivo en el grado de expresión de las características deseables de calidad subyacentes en el.-63.- germoplasma. Por ello, resulta valioso generar el conocimiento que permita incorporar, a la tecnología de producción de maíz, los ajustes necesarios para obtener granos con la calidad requerida por esta industria.Minerales
La concentración de .-64.-cenizas en el grano de maíz es aproximadamente del 1,3 por ciento, sólo ligeramente menor que el contenido de fibra cruda. El contenido de minerales de algunas muestras de Guatemala se indican en el Cuadro 14. Los factores ambientales influyen probablemente en dicho contenido. El germen es relativamente rico en minerales, con un valor medio del 11 por ciento, frente a menos del 1 por ciento en el endospermo. El germen proporciona cerca del 78 por ciento de todos los minerales del grano. El mineral que más abunda es .- 65.-el fósforo, en forma de.-66.- fitato de potasio y .-67.-magnesio, encontrándose en su totalidad en el embrión con valores de aproximadamente 0,90 por ciento en el maíz común y cerca del 0,92 por ciento en el maíz opaco-2. Como sucede con la mayoría de los granos de cereal, el maíz tiene un bajo contenido de.-68.- Ca y de -69.- oligoelementos.
Vitaminas liposolubles
El grano de maíz contiene dos vitaminas solubles en grasa, la provitamina A, o.-70.- carotenoide, y la vitamina E. Los carotenoides se hallan sobre todo en el maíz amarillo, en cantidades que pueden ser reguladas genéticamente, en tanto que el maíz blanco tiene un escaso o nulo contenido de ellos. La mayoría de los carotenoides se encuentran en el endospermo duro del grano y únicamente pequeñas cantidades en el germen. El .-71.-beta-caroteno es una fuente importante de vitamina A, aunque no totalmente aprovechada pues los seres humanos no consumen tanto maíz amarillo como maíz blanco. Squibb, Bressani y Scrimshaw (1957) determinaron que el beta-caroteno equivalía aproximadamente al 22 por ciento del total de carotenoides (ó,4-11,3 µg/g) de tres muestras de maíz amarillo. El contenido de.-72.- criptoxantina equivalía al 51 por ciento del total de carotenoides. La proporción de vitamina A variaba de 1,5 a 2,6 µg/g. Los carotenoides del maíz amarillo pueden destruirse durante el almacenamiento; Watson ( 1962) encontró en el maíz recién cosechado valores de 4,8 mg/kg, que al cabo de 36 meses de almacenamiento habían disminuido a 1,0 mg/kg. Lo mismo sucedió con las.-73.- xantofilas. Según estudios recientes, si se mejora la calidad proteínica del maíz aumenta la transformación de beta-caroteno en vitamina A.
La otra vitamina liposoluble, la vitamina E, que es objeto de cierta regulación genética, se halla principalmente en el germen. La fuente de la vitamina E son cuatro.-74.- tocoferoles; el más activo biológicamente es el .-75.-tocoferol-alfa; aunque el.-76.- tocoferol-gamma es probablemente más activo como antioxidante.
Vitaminas hidrosolubles
Las vitaminas solubles en agua se encuentran sobre todo en la capa de aleurona del grano de maíz, y en menor medida en el germen y el endospermo. Esta distribución tiene importancia al elaborar el cereal pues, como se expondrá más adelante, la elaboración da lugar a pérdidas considerables de vitaminas. Se han encontrado cantidades variables de.-75.- tiamina y.-76.- ribofiavina en el grano del maíz; su contenido está determinado en mayor medida por el medio ambiente y las prácticas de cultivo que por la estructura genética, aunque se han encontrado diferencias en el contenido de estas vitaminas entre las distintas variedades. La vitamina soluble en agua a la cual se han dedicado más investigaciones es el .-77.-ácido nicotínico, a causa de su asociación con la deficiencia de niacina, o pelagra, fenómeno muy difundido en las poblaciones que consumen grandes cantidades de maíz (Christianson et al., 1968). Al igual que sucede con otras vitaminas, el contenido de niacina es distinto según las variedades, con valores medios de aproximadamente 20 µg/g. Una característica propia de la niacina es que está ligada y por lo tanto, el organismo animal no la puede asimilar; sin embargo existen algunas técnicas de elaboración que hidrolizan la niacina, permitiendo su asimilación. La asociación de la ingesta de maíz con la pelagra se debe a los bajos niveles de niacina del grano, aunque se ha demostrado experimentalmente que también son importantes los desequilibrios de aminoácidos, por ejemplo la proporción entre la.-78.- leucina y la.-79.- isoleucina, y la cantidad de .-80.-triptofano asimilable (Gopalan y Rao, 1975; Patterson et al., 1980).
El maíz no tiene vitamina B12 y el grano maduro contiene sólo pequeñas cantidades -en caso de que las haya- de ácido ascórbico. Yen, Jensen y Baker (1976) hallaron un contenido de aproximadamente 2,69 mg/kg de .-81.-piridoxina asimilable. Otras vitaminas, como.-82.- la colina,.-83.- el ácido fólico y.-84.- el ácido pantoténico, se encuentran en concentraciones pequeñísimas.
Cambios en la composición química y el valor nutritivo durante el desarrollo del grano
En muchos paises se utiliza a menudo maíz maduro como alimento, ya sea cocinado entero como cereal en la panoja, o molido para eliminar la cubierta seminal y utiliza la pulpa para hacer gachas espesas o comidas como los tamalitos. Durante la maduración se modifica considerablemente la composición química. Todos los estudios al respecto (p. ej., Ingle, Bietz y Hageman, 1965) han puesto de manifiesto que disminuyen el nitrógeno, la fibra cruda y la ceniza, con respecto al peso en seco, y que aumentan el almidón y el extracto etéreo.
CUADRO 15 OTRAS SUSTANCIAS QUÍMICAS QUE INTERVIENEN .COMPUESTOS QUÍMICOS GENÉRICOS QUE INTERVIENEN. 82.-COMPUESTOS FENÓLICOS 83.– DISULFURO DE METILO.-84.- acetilmetilcarbitol.-85.– trigonelina 86.– niacina vitaminaB-3.- 87.- FLUVOAMINA. 88.- XIANTINAS como diurético. |89 VITAMINA B6 90.- ÁCIDO FÓLICO. 91.– VITAMINA B2 ,92 VITAMINA B3. 93 VITAMINA B9.. 94.- FOLATAS ALIMENTARIOS, AMINOÁCIDOS .95.- ACIDO ASPÁRTICO. 96.- GLUTÁMICO 97, – ALANINA. 98 .- ARGININA 99.- CISTINA 100.- HISTIDINA .-101.- ISOLEUCINA .-102.- LEUCINA..-103.-LISINA.-104.- METIONINA. 105.- PROLINA.-106.-.- SERINA .-107.– TIROSINA. -108.- TREONINA .-109.-. TRIPTOFANA 110.- VALINA .-111.-.- ANTI OXIDANTES ANTIMUTAGÉNICAS N-METILPIRIDINA .-112.- – DIURÉTICO METILFENOL. 113.-ANTIOXIDANTE ÁCIDO CLOROGÉNICO.-114.-DIAMINA . -115.- . DISULFURO DE DIMETILO. 116.-. NIACINA 1117.-.- FLUVOAMINA. .-118.-.- INHIBIDOR DEL ÁCIDO CLOROGÉNICO METILPIRIDINA.mejora el paso eléctrico de neurona a neurona. .-119.-METILFENOL. actúa como alerta . 120.– PROTEINAS 121.-MINERALES POTASIO, CALCIO, MAGNESIO, FOSFORO. 122.-.– ÁCIDO SALICÍLICO .-123.-MINERALES POTASIO,CALCIO,MAGNESIO,FOSFORO .-125.-CARBOHIDRATOS..-126.- ÁCIDOS ALIFÁTICOS .-127.- LÍPIDOS 128— GLICÓSIDOS.-129. – AZÚCARES .- 130.- HIDROXIAMINO 131.-B-DAMASCININAE .- 206.- 5-etil-9-hidroxi-2-metilfuranone.-132.- PENTAMINLIONE. .-133.-.- METIONAL.- 134.-2 ISOPROPIN3-METOOXIPIROZINE.- 135.- – FURAQNEOL.- 136.- .- 2 ETIL-3,5- DIMETILPIRAZINE.-135.- 3 TRITROXI-1,5-DIMETIL-2(5N)-FURONEO .-136- NEO SOTOLON .-138- 4-ETILGUAIACIL .-139.-.- 5 ETIL-3-HIDROXIONE-4METILFUANIMA 217.-VITAMINAS VITAMINA A.-140.-.- VITAMINA B10.-141.-VITAMINA B1 .-142- BETACAROTENO VITAMINA B2.- .143.-.- VITAMINA B10.- 144.– VITAMINA B3.- 145..-VITAMINAB9.- 146.-.-FOLAoTOS ALIMENTARIOS. 147.-.- NIACINA.- 148-.CAROTENO.- VITAMINA B6.-VITAMINA B5. POTASIO, VITAMINA E.- 1–AMINOÁCIDOS NUTRIENTES BÁSICOS MÁS VITAMINAS. -150.- ÁCIDO ASPÁRTICO.- 151.-.- ÁCIDO GLUTÁMICO.- 152.-ALANINA.-153.-.- ARGININA.-154.-.- CISTINA.-FENILALANINA.– 155.- .-HISTIDINA.- 156.- ISOLEUCINA.- 157.-LEUCINA .158- METIONINA.- 159- PROLINA.- 160.-SERINA.- 161.- TIROSINA.- 162.- TREONINA.-163.-.-TRIPTOFANO.- 164.-.- VALINA.-NEUROTRASMISORES.-166.– SEROTININA.-167-. NOREPINEFRINA.-168.- ACETILCOLINA .-169.- FOLATOS ALIMENTARIOS 170.- PREFORMADA..171.- PROTEINA TRANSMEMBRANA LACTOSA-PERMEASA. 172.- LACTOSA.-COMPONENTES DE LA HOJA. 173.– CLOROPLASTOS en las células de la fotosíntesis.174.– MITOCONDRIAS orgánulos celulares suministran la energía y suministran el A.T.P. a base de 175.- CARBURANTES METABÓLICOS en las mitocondrias . GLUCOSA, ÁCIDOS GRaSOS, AQMINOÁQCIDOS.176.- MITOCONDRIAS membrana permeable a los iones, metabolitos y muchos polipéptidos.- contienen PROTEINAS para formar los poros PORINAS o VDAC canal aniónico dependiente del voltaje para el paso de las moléculas. ALIMENTO mas AGUA.se produce la CLOROFILA.- 177.-.-estomas 178.- células oclusivas-179.-ostiolo .180 .-ostiolo.181.- células guarda -182.- cámara subestiomática comunica con el parénquima.- 183.- cutina cera que recubre la hoja..184- epidermis de la capa monocelular. 185.MESIOLO 186. parenquina lagunar. contacta con el posiolo. 187..- posiolo unión de la hoja con la rama.188- epidermis adaxial. 189.- mesiolo.- 190.- epidermis abaxial.célula vegetal .191-.los orgánulos 192.-PLASTOS CLOROPLASTOS.-193-leucoplastos y 194.- cromoplastos.-195.-vacuolla central con tonoplastos. 196.-Mitrocondrias microcuerpos-peroxisomas-glioxiomas.-197.- Vesículas .RETÍCULO ENDOPLASMÁTICO RUGOSO-NÚCLEO CON NUCLEOLO. RETÍCULO ENDOPLASMATICO LISO.- APARATO DE GOLGI. DICTIOSOMAS. LISOMAS.MATRIZ MITOCONDRIAL -MITOSOL. Moléculas de citosol. iones metabolitos. 198.-.-ADN circular bicateriano. MITORRIBOSOMAS. síntesis en 199.-.-PROTEINAS MITOCONDRIALES. .200-ARN MITOCONDRIAL..- 201.-CICLO DE KREBS.- 202.-.- BETA OXIDACIÓN DE LOS ÁCIDOS GRASOS.- 203.-.-OXIDAXIÓN DE LOS AMINOÁCIDOS.- 204.-.- SÍNTESIS DE LA UREA Y GROPOS HEMO.- 205.- SINTESIS QUE OCURREN EN LOS ORGÁNULOS EUCARIÓTICOS.- 206.- LÍPIDOS.- 207´SÍNTESIS EN EL RETÍCULO ENDOPLÁSTICO.- 208.- SUSTANCIAS UTILIZADAS EN EL EMBALAJE DE PROTEINAS EN LAS VESÍCULAS.209.- SÍNTESIS ASOCIADAS CON LOS RIBOSOMAS EN LAS MEMBRANAS CITOPLASMÁTICA. DISOMAS. MITROCONDRIAS. 210.. SÍNTESIS QUE OCURREN EN LAS VÉSCULAS DE ALMACENAMIENTO DEL ADN 211.- SÍNTESIS EN LOS ORGÁNULOS EUCARIOTAS Y COMPONENTES CELULARES.221.- GLUXISOMAS TRANSFORMACIÓN DE LOS LÍPIDOS EN AZUCAR.- GLISOMA para la transformación de los lípidos en azúcar. 213.- HIDRÓGENO SOMA producción de energía e hidrógeno. 214.- MELANO SOMA síntesis de almacenamiento de pigmentos. 215.- PERIXIOSOMAS OXIDACIÓN DE PROTEINAS Y DESENTOXICACION CELULAR.- 217.- SINTESIS EN LOS COMPONENTES DE LA CÉLULA VEGETAL. 218. MEMBRANA PLASMÁTICA.- 219.-COMPONENTES DEL CITOPLASMA.- 220.-COMPONENTES DEL CITOESQUELETO.-221.-COMPONENTES DELNÚCLEO Y MUCLEOLO.-222.- COMPONENTES DEL RETÍCULO ENDOPLÁSTICO RUGOSO. -223.-COMPONENTES DEL RETÍCULO ENDOPLÁSTICO LISO 224.- COMPONENTES DEL RIBOSOMA. 225.- COMPONENTES DEL APARATO DE GOLGI Y LOS DICTOSOMAS.- COMPONENTES DEL MITOCONDRIA. COMPONENTES DE LA VESÍCULAS.- 226.- COMPONENTES DE LAS LISOSOMAS.- COMPONENTES DE LA VACUOLA CENTRAL CON TONOPLASTOS.- 227.- COMPONENTES DE LOS PLASTOS. 228.-COMPONENTES DE L CLOROPLASTO.- 229.- COMPONENTES DEL LEUCOPLASTO.- 230- COMPONENTES DE LOS CROMOPLASTOS.- 231.- COMPONENTES DE LOS MICROCUERPOS.- 232.- COMPONENTES DE LOS PEROXISOMAS. 233.- COMPONENTES DE LOS GLIOXISOMAS. 234.- COMPONENTES DEL FLAGELO SETO EN GAMETOS. 235- COMPONENTES DE LA PARED CELULAR. 236.- COMPONENTES DE LOS PLASMODESMOS.. COMPONENTES DE LOS GLIOXISOMAS PERIOXISOMAS QUE CONVIERTEN LOS LÍPIDOS EN CARBOHIDRATOS.- 237. AZÚCARES SINTETIZADOS producidos por la fotosíntesis. 238- REACCIONES DE ÁCIDOS GRASOS por hidrólisis en ACETIL-CoA- 239. .- I.. Enzimas hidrolizan el ACETIL CoA. .-231.- PEROXISOMALEShirolizan al ACETIL CoA. 232.-BETA-OXIDACION 233.- enzimas clave del ciclo de glioxilato .-234- ISOCITRATO LIASA.- 235.- MALATO SINTASA.236.- ACIDOS GRASOS TRANSFORMADOS EN AZÚCARES DURANTE LA GLUCONEOGÉNESIS. -237.- LA GLUCOSIS. el desdoblamiento de las moléculas alimentisisa en el CITOSOL componente líquido del citoplasma de los organelos. 238.- AMINOÁCIDOS GLUCOGÉNICOS.- 239.- OXALO ACETATO .- 330.- CO2.- LACTATO -PIRUVATO -CO2 331.- FOSFOENOLPIRUVATO.- 332.- 2-FOSFOENOLPIRUVATO.333.- 1,3 DIFOSFOGLICERATO .-240.- GLICERATO 3-FOSFATO –DIHDROXIACETONA FOSFATO—GLICEROLFOSFATO—GLICEROL.- 241.- FRUCTUOSA 6-FOSFATO.- 242.-GLUCOSA .-243.- GLUCOGÉNESIS .- 244.- GLUCÍDICOS -245.-.- CICLO DE AMINOÁCIDOS.- CICLO DE KREBS.- 246.- AMINOÁCIDOS.-247.- LACTATO.- PIRUVATO.- 248.- GLICEROL 249.- CICLO DE ÁCIDOS TRICARBOXÍLICOS .-250.- ESQUELETO DE CARBONOS.- 251.- BETA-OXIDACIÓN ACETIL-cOa .- 252- SUCCINIL-CoA. -. 253.– CLOROPLASTOS clorofilas y carotenoides.-254.- FOTOSÍNTESIS.- 255.- CLOROFILOA .-256.- CAROTENOIDES-CAROTENO.- 257.–COLORANTE.- 258.-.- LÍPIDOS-PROTEINAS transporte de electrones fotosintética. 259.- ENZIMAS ATP-SINTETASA .-260.– pectinas en el foemay células parenquimáticas. 261.-. ADN LIGASA ATP.262 ACIDO HIDROCINÁMICO SINTETIZADO POR LA HIDROXILACION DEL CUMAROILO. 262- ÁCIDO SKIKIMICO PRODUCE EL 263-.- ÁCIDO CLOROGÉNICO.- 264.- PRECURSORES DE ÁCIDO FERÚLICO .- 266.-ALCOHOL CONIFERÍLICO 267.- ALCOHOL SINAPÍLICO. 268.- A.T.P. molécula simple formada por 363 en el nucleótico . ADEINA.-269.- RIBOSA .- 270.- TRES FOSFATOS.- 271 .- PIROSFOSFATO.-272.- ADN MITOCONDRIAL .-273.- ATP.- 274.- ADP.- 275.- PIRUVATO .276.-.- COMPUESTOS FENÓLICOS. En el citoplasma y la mitocondria 277.-POLIFENOLES.- 278.-.- FENÓTICOS..-279- ENZIMAS DEL- SINTETIZA A LA LIGNINA. 379.- BIOSINTESIS DE LA LIGNINA. FORMAS DE LA BIOMASA 380.- ÁCIDO FELÚRICO.- 280.- ALCOHOL CONIFÉRICO.-281.- ALCOHOL SINAPÍLICO 282.- ALATOXINAS como glucósidos que se hidrolizan con agua y una enzimam .producen el metabolismo en la planta..- 283.– GLISOMA.- AGLICOMA. derivada de la ANTRAQUIMONA. 284.- glucósidos antraquinónicos.- 285.– glucósidos fenólicos simples. 286.- salicina .un glucósido alcohólico . 287.- glucósido cardiacos-aglicona.288.-ÁCIDO CLOROGÉNICO .289.- FOTOSÍNTESIS EN EL CICLO DEL ÁCIDO SIKÍMICO 290.- VÍA DEL POLIACETATO.- .-288.-MONOTERPENOS.-289.- COMPUESTOS FENÓLICOS.- 290.- SÍNTESIS DE LOS AMINOÁCIDOS AROMÁTICOS .-FENILALANINA- TIROSINA.-291.- ÁCIDOS CINÁMICOS. 292.- FENOLES SENCILLOS.- 293.- ÁCIDOS FENÓLICOS.- 294.- CUMARINAS.- 295.- LIGNANOS.- FENILPROPANO.- 296.- RUTA DE LOS POLIACETATOS.-297.- QUINONAS.- 298.- .0ricenoles., 299.- flavenoides., 300.-, via de l MELATONATO.- 301-., COMPUESTOS TERPÉNICOS ., 302-., SIKIMATO .-303.- FURANO.-304.-.- PIRANOCUMARINS.- 305.-ACIDOS FENÓLICOS.-306.- ÁCIDO CARBÓLICO.- 307.-ACIDO FÉNICO.- 308.- ÁCIDO FENÍLICO.- 309.- ÁCIDO FENÓLICO 310.-ALCOHOL FENÍLICO.- 311..- ALCOHOL FENILO.- 312.- BENCENOL.- 313.- BENZAFENOL.- 314..- FENILHIDRATO.- 315.-.- HIDROBENCENO.-316..- HIDROFENILO.-317- IZAL.- 318.- MONOFENOL.- 319.- MONOHIDROXIBENCENO.-320.- OXIBENCENO.- 321-.- FENOL–REACCIONES DEL HIDROXIMETILADO.- 322.-VENZENOL.- 323.- .- RADICAL FENILOXILO.324- DIHIDROXIBENZENO.-325.- TRIOXIBENCENO: 326..- QUINONAS.- 327.- GLUCOSA.- .328.- ANTIOXIDANTES.- ANTIMUTAGÉNICAS.-329- N-METIL PIRIDINA.330.-.- fenilalanina.- 331.- glicina.- 332..- histina.-333.- isoleucina.- 334.-leucina.- 335..-lisina.- 336.– metionina.- 337..- prolina.- 338.- serina.- 339.- tirosina.- 340.- TREONINA.-341.- TRIPTOFANO.- 342.- VALINA.-343.- SEROTONINA.- 344..- DOPAMINA.-345.- NEREPINEFRINA.- 346.- ACETILCOLINA.-.347.- AMINOÁCIDOS.- 348.- NEUTROPOLARES.349.- POLARES O HIDRÓFILOS.- 350 SERINA Ser,5 -.- 351.- treonina Thr,T .- GLUTAMINA Gln,Q .- 352.- ASPARAGINA Asn,N .- 353.-tirosina tYR,y .- 354.- neutro no polares,apolares o hidrófilos.- 355.– ALANINA aLA,a .- 356.- cesteina cYS,c.- 357.- VALINA Val,V .- 358..- LEUCINA, Leu,L .- 359.- isoleucina Ile,I .- 360.- METIONINA Met,M .361.- PROLINA Pro,P .- 362.- FENILALANINA pHE,f.- 363.- TRIPTÓFANO Tr,W .-364-.- GLICINA Gly,G .- 365.- CON CARGA NEGATIVA O ÁCIDOS.- 366.- ÁCIDO ASPÁRTICO Asp,D.- 367.- ACIDO GLUTÁMICO Glu,E .- 368.- CON CARGA POSITIVA O BÁSICOS.- 369.- LISINA Lys,K .- 370.- ARGININA Agr,R .- HISTIDINA His,H .- 371.- AROMÁTICOS 372.- FENILALANINA Phe,F 373.- TIROSINA Tyr,Y .- 374.- TRIPTÓFANO Trp,W .- 375.- PROLINA Pro,P .- 376.- AMINOÁCIDOS ESENCIALES PARA EL SER HUMANO.- 377.- EXTRUCTURAS TERCIARIA DE LAS PROTEINAS.- 378.- CATALIZADOR PORDISULFURO ISOMERASA. en la HISTONAS ocurre . 378- METILACIÓN de las LISINAS.- 379.- COLÁGENO AMINOÁCIDO 4-HIDROXIPROLINA.- 380- BETA ALARINA.-381.- ÁCIDO GAMMA-AMINONBUTÉRICO GABA.-382.- SARCOSINA ETILGLICINA.- 383 .- ÁCIDO ALFA AMINOBUTÉRICO AABA -384.- ÁCIDO DJINCÓLICOHIPOGLICINAS AYB. /385..AMINOMISINA ALEINA CANALINA.- 386.- CANOVANINA ORNITINA.-387.- HOMOMETIONINA.-388.- HOMOSERINA.-389..- AMINO{ACIDOS .-390.- HOMOERGENINA.- 391.- HOMOFENILALININA 392.- HOMOCESTEINA.- 393.- HOMOCESTEINA.- 394.- HOMOPLEUCINA.- 395.- CISTATIONINA NARVALINA ALANINA. 396-. ÁCIDO GANINA AMINOBUTÉRICO .-397.- PROTEINAS DE LA MEMBRANA..398.- INTEGRALES.- 399.- PERIFÉRICAS.- 400.- ACUAPORINAS. .401.-CANALES IONICOS.-402.- FAMILIA DE TRANSPORTADORES DE SOLUTOS.- 403..- PROTEINAS TRANSMEMBRANAS.-404.- ACUAPORINA.-405.- AT PASA. -406.- CAVEOLINA.- 407.- CITOCROMO B .-408.- CITOCROMO P450.- 409.- COMPLEJO DE DISTROFINA-GLUCOPROTEINA.- 410.- CONEXINA.- 411..- CONEXINA .-412.- CONEXONA.-413.- COTRANSPORTADOR Na-K-2Cl .- 414.– diotroglicano.- 415.- DIOTROGLICANO.-416.- FOTOTROPINA.- 417.- METANO MONO OXIGENASA.- 418.- PROTEINAS DE TRANSPORTE SODIO-GLUCOSA.- 419.- RECEPTOR ACOPLADO A PROTEINAS G..-420.- RECEPTOR DEI9NSULINA.- 421- ANTOCIAMINNAS DE LAS CACOALAS .-422.- CLOROFILA- .- 423.-.- TRIFOSFATO DE ADENOSINA.- en el nucleótico.- 424.-. ADENOSINATRIFOSTATO.- 425.-.- ADENINA.- 426.- PENTOSA.- 427- RIBOSA.- 428.- GRUPOS FOSFATO.- 429.- FOTORESPIRACIÓN/RESPIRACIÓN CELULAR. CONSUMIDORAS DE LAS ENZIMAS EN LA.- 430.- CATÁLISISC10H16N5O13P3 606.- GRUPO DE FLAVONOIDES GLUCÓSIDOD.-431.- ANTICIANIDINAS .-432.- AGLICONA.-433.- ENLACE GLUCÓSIDO.,.- 434.- 1,3,7 TRI METIL-2,6-DIOXOPURINA.-435.- .- .- En el cuerpo se transforma por la ISOENZIMA DEL CITOCROMO P45 CYP HEPÁTICO DESMETILIZACIÓN EN-628.- N-ACETILTRANSF METABOLIZA A 629.- PARAXANTINA EN AFMU.- 630 AFMU: 5 ACETILAMINA-6-FORMILAMINA-3-METILURACILO.- 436.- ENZIMAS CYP2E1.- 437.- ISOENZIMA DEL CITO CROMO P450.- 438.- FAMILIA DE 2E,-. 439.- FAMILIA DEL GEN .-440.-FAMILIA DEL CYP3A3.–441.- FENILEFINA O PIRALGINA.-442.- ENZIMA {ACIDO CAFEICO-O-METILTRANFERASA.-443.- ALCOHOL CONIFÉRÍLICO.-444.- FELANDRENO.- 445.- A-PINENO.-446.- TUYONA.-447.- TUYOL.- 448.- DERIVADOS : ALCOHOL.- 449.- ISOVALERAT.-450.-PALMITATO.- 451.-BISABOLENO.- 452.- CAMFENO.- 453..- CADINENO.- 454.- FELANDRENO.-455.- NEROL.-456.- AZULENOS.-457.- ABSINTINA.- 458.- ISOABSINTINA.-459..- 1-4-DIMETIL 7- ETILAZULENO.- 460.- 7-ETIL-5,6-DIHIDRO-1,4-DIMETILAZULENO.-461..- 3-O-RUTÓSIDO 3.-462..- TANINOS.- 463.- RESINAS.- 464.- ALMIDÓN.-465.- MALATOS.- 466..- NITRATO DE POTASIO.- 467.- COMPUESTOS NITROGENADOS.- 468.- POLISACÁRIDOS.- 469..- AZÚCARES.- .- 470.- TRIGLICÉRIDOS.- 471..-ÁCIDO LINOLEICO.- 472.- ÁCIDOS VOLÁTILES FÓRMICO Y ACÉTICO.-473.- ÁCIDOS NO VOLÁTILES .- 474.-MELANOIDINAS.- 475.- prooxidante del ÁCIDO ASCÓRBICO.- 476..- INIBIDORESDE LA LIPOPEROIDACIÓN DE HIDROXILOS.- 477.- PERÓXIDOS.- MELONOIDINAS.- 478.- QUELANTE DE CATIONES METÁLICOS.- 479.- ASPARTATO AMINO TRANSFERASAS.- 480.- REDUCTOR DE LOS NIVELES DE MALONDIALALDEHIDO .-481- CATECOLAMINA.- 482.- GLUCAGÓN-1 GLP-1 .-482.- QUINOLACTONAS.-483.- QUINIDAS.-484.- ETA-HIDROXIESTEROIDE.- 485.- FOSFOETANOLPIRUVATO-CARBOXIBINASA.-486..- METILENTETRAHIDROFALATO REDUCTESA MTHFR.- 492..- ÁCIDO FÓLICO.- 493.-HIPERHOMOCISTEINEMIA.-494.- GOMAS ARÁBICAS .- 490.-CREATINAS.-491..- AAT ACTIVIDAD TOTAL DE ÁCIDO ASCÓRBICO.-492.- trigonelina.- 493.- b-damasceninae 2.- 494-.- 3metil-2-butentiol2 isobutatil-metoxil.- 495.- 5-ETIL-9-HIDROXIL-2-METIL FURANONE.-496.- 2,3-PENTANIDIONE .-497.- MENTIONAL.- 2ISOPROPIN-3-METO OXIPIRAZINE .- 498.- 2 ETIL-3,5-DIMETILPIRAZINE.- 499.- 3 HIDROXI-1.5-DIMETIL-2((5H)-FURNONE-O-STOLON.-500.- HIDROXILHEXOSAS.- GALACTOSA.-501.- ,ARABINOSA .- 502.- ÁCIDOS PECTINICOS PROTOPECTINAS.- 503.- PROTOPECTINASAS.- PECTINASA.- 504.- PICTINESTIRASAS.- 505.- PECTASA.- 506.- ADN OXI RIBONUCLEICO.- 507.- AMINOFELINA.- 508.- ÁCIDO CLORHÍDRICO.-.-509.- LANOSTEROL.- 510.- MEVALONATO-5-KIROSFODFATO.- 511.- MEVALONATO-5-PIROSFOSFATO .- 512.- MEVALONATO-3-FOSFATO-5-PIROFOSFATO.- 513.- IPP: ISOPENTILPIROSFOSFATO .- 514.- DESCARBOXILASA.- 515.- 3-3-DIMETILPIROFOSFATO.- DMAPP .-516.- DMAPP + IPP.- 517.- GPP . GERANILPIROFOSFATO.- 518.- TRANSFERASA.- 519.- ISOPENTILPIROFOSFATO.- 520.- FARNESILPIROFOSFATO.- 521.- ESCUALENO.- 522.- LANOSTEROL CICLASA.- 523.- LANOSTEROL.- COLESTEROL.- 524.- DELTATOCOFEROL B-9.- 525.- FOLATOS ALIMENTARIOS.- 526.- NORESPINEFRINA.- 527.- ACETILCOLINA.- 528.- CARBONATO DE CALCIO.- 529.- ARN MITOCONDRIAL.- 530.- ARNE.- ESTRUCTURAS REDONDEADAS.- 531.- BETA OXIDACIÓN ACETIL-CoA.- 532.- SUCCINIL-CoA SUSTRATO GLUCONEOGENÉTICO.- 533.- FRUCTUOSA -1,6-BIFOSFATO EN FRUCTUOSA-6-FOSFATO.- 534.- FRUCTUOSA-1,6-BIFOSFATO.-535.- FOSFONOLPIRUVATO.- 536.- OXALOACETATO.- 537.- CARBOXIQUINASA.- 538.- FOSOFRUCTOQUINASA.- 539.- FRUCTUOSA-1,6-BISFOSFATASA.- 540.- GLUCOSA-6-FOSFATO.- 541.- FOSFOGLUCOISOMERASA.- 542.- AMP CON FRUCTUOSA 1,6-BISFOFATASA.- 543.- ARN.- GEN NO CODIFICANTE..-544.- GENES CODIFICANTES DE UNA PROTEINA.- 545.- UTR REGIONES FLANQUEANTES NO TRADUCIDOS.- 546 .- ARN TRADUCCIÓN Y ESTABILIDAD AJUSTE-.547.- EXONES CODIFICANTES.- 548.- INTRONES.-549.- INTRONES EN REGIÓN EN LOS GENES DE EUCARIOTAS.- 550.- PROTEOMA ejecuta las funciones celulares.- 551.- ARN maduros en el splicing alternativo-.552 .- UNIÓN DE SECUENCIAS GENÓMICAS que codifican un conjunto coherente de productos funcionales potencialmente solapantes Sustituyen las secuencias UTR. A760.- <GENOMA conjunto de genes contenidos en los cromosomas.- 553.- ADN contenido en el núcleo por los cromosomas.-.554.- MITOCONDRIAS genoma de los orgánulos celulares.-555.- PLASTOS.- 556.- CROMOSOMAS HOMÓLOGOS.- en organismos polipoloides.- 557.- EUCROMATINA.- 558.- HETEROCROMATINA.- 559.- BROMOMOLÉCULAS EFECTORAS.- 560.- PROTEOMA.- 561.- ADN ESTROGÉNICO.- 562.- ADN NO CODIFICANTE PSEUDOGENES.- 563.- ADN NO CODIFICANTE PREUDOGENES.- 564.- CNEEs regiones reguladores en elementos no exónicos.- 565.- SINE secuencia de genes reguladores.- 566.- LINE.- secuencia de genes reguladores.- 567.- LTR.- secuencia de genes reguladores.- 568.- FACTORES DE LA TRANSCRIPCIÓN.- 569.- ESTRUCTURA DE LA CROMATINA.- 570.- MODIFICACIONES DE LAS HISTOMAS.- 571.- ESTRUCTURA DE UN ALFA-AMINOA´CIDO.- 572.-.- 100 DERIVADOS DE LOS SMINOÁCIDOS ,PUENTES DISULFURO .- 573.- PUENTE DISULFURO-ISOMERASA.- 574.- METILACIÓN DE LAS LISINAS EN LAS HISTOMAS.- 575.- AMINOÁCIDO-4 HIDROXIPROLINA EN EL COLÁGENO.-576.- AUG CONDÓN INICIAL EN LA METIONINA DE LOS POLIPÉTIDOS.-577.- NEUROTRASMISORES O VITAMINAS EN LA BETA-ALAMINA Y EL ÁCIDO GAMMA-AMINOBUTÍRICO. GABA.- 578.- AMINOÁCIDOS NO PROTEINICOS SARCOSINAETILGLICINA.- 579.- AABA ÁCIDO ALFA-AMINOBUTÍRICO.- 580.- ÁCIDO DJENCÓLICO HIPOGLICINAS A Y B . 581.- MIMOSINA ALISINA CANALINA CANALINA CANAVAININAHOMOARGININA HOMOFENILALINA HOMO CESTEINA HOMOLEUCINA CISTOTIONINA NORVALINA NORLEUCINA CICLOPENTENIL GLICINABETAALAMINA ÁCIDOGAMMA -AMINOBUTÉRICO-ÁCIDOIBOTÉNICO ÁCIDO PIPECÓLICO ÁCIDO GUANIDINACÉTICOTAURINA ÁCIDO TRANS-2-AMINO-5CLORO-4-HANOICO.-582.-{ACIDO TRANS-2-AMINO-5-CLORO-6-HIDROXI-4-HEXENOICO.-580..- CORYNEBACTERIEM ETANOLAMINOFILUM 5- HIDROXIBUPTÓFANO.- 581..-ÁCIDO LICOPÉRDICO.- 582.- LYCOPERDON PERLATUM.-583.- ÁCIDO LENTÍNICO.- 584. .- ÁCIDO ESTIZOLOBÍNICO.- 585.- ÁCIDO ESTISOLÓICO TIROXINA.- 586.-AZOXILACELINA.- GENES DE EUCARIOTAS., 587.- EUCROMATINA.-588..- HETAROCROMATINA.- .,589.- INTRONES SECUENCIAS UTR.-590.- ALFA- AMINOÁCIDOS.- 591.- L-AMINOÁCIDOS L- GLICERALDEHIDO.- 592-.- D- AMINOACIDO D- GLICERALDEHIDO.-593.- HOLOPROTEIDOS.- 832.- HETEROPROTEIDOS.- 833.- SACARASA Y PEPSINA.- 834.- CONTRACTIL ACTINA Y MIOSINA.835.- RODOPRINA.- 594.- TROMBINA Y FIBRINOGENO.- 595.- ACTIVIDAD GEOMAGNÉTICA CAMPO ELECTRICO.- 596.- EFECTO DEL ELECTROMAGNETISMO.- 597.- POLARIZACIÓNMAGNÉTICA.- 598.- EFECTOS SOBRE LAS CARGAS ELÉCTRICAS.- 599.- EFECTOS EN LOS CLOROPLASTOS de la piña- 600.- EFECTOS EN LOS ORGÁNULOS.- 601.- EFECTOS EN LOS ORGANISMOS EUCARIONTES. fotosintetisadores de la fotosíntesis.-602.- EFECTOS EN LOS PIGMENTOS CON VERTIDORES DE LA ENERGÍA LUMÍNICA EN ENERGÍA QUÍMICA DE LA CLOROFILA.- – 603.- ELECTROFORESIS ISOELECTRO ENFOQUE PARA EL EFECTO DE LAS CARGAS DE LOS PROTEINAS.- 604.- FASE LUMINOSA EN LOS TILACOIDES CADENA DE TRANSPORTE DE LOS ELECTRONES.- 605.-ATP-SINTETASA.- 606.- ATP Y GENERACIÓN DE PODER REDUCTOR NADPH.- 607.- FASE OSCURA EN EL ESTROMA- ENZIMA RUBISCO -CO2 EN EL CICLO CALVIN.- 608.- ENERGÍA QUÍMICA ATP Y GENERACIÓNDEL PODER REDUCTOR NADPH.- 609.- FOTOSÍNTESIS Y FOTOFOSFORIZACIÓN 610.- fotones solares.-611.- complejo citocrómico b6f. -612.- ENZIMA ATP SINTETASA.-613.- NAD(P)H+H+ para la fijación del co2.-614.- clorofila P680.-615.- FEOFITINA.- 616.- PLASTOQUIINA CICLO DE OXIDACIÓN -REDUCCIÓN.-617.- PLASTOCIAMINA.-618.- FOTOFOSFORIZACIÓN CÍCICA.- 619.- CLOROFILA P-700.- 620.- FERRODOXINA.-621.- PIGMENTOS DE ANTENA.- 622.- CLOROFILA ayb.-623.- COMPUESTOS A BASE DE CHONS.-624.- RADICALES LIBRES DE N,S,O, Y SUS RESPECTIVAS MINERALES K,P,Ca. ..625.- HEMICELULODA Y HOLOCELULOSA.- 626.- CELULOSA.- 627,. LIGNINA.-628- GRASAS CRUDAS DEL ENDOSPERMO.- 629.- PROVITAMINA A.- 630.- BETACAROTENO.-.631..- CAROTENOIDES.- 632.- BETACAROTANO.- 633.- ARGININA.- 634.- ISOLUCINA.- 635.- FENILALANINA.-636.- fructuosaJMAF para el almivar.- 637..- glucoamilasa.- 638.- JARABE HFCS.-639-. RESINAS Y ALMIDÓN.-640.- ENZIMA RUBISCO DEL CICLO DE CALVIN.-641.- CIANOBACTERIAS.-642.- PIGMENTO DE CROMÓFERO + PROTEINA.-643-.- PIGMENTOS ACCESORIOS EN LA CLOROFILA A.- 644.- CLOROFILA B Y CLOROFILA CPARA EL VERDE .-645.- FOTOSÍSNTESIS DE FASE OSCURA.-646.- FOTOSÍNTESIS DE FASE LUMÍNICA.- 647.- MEVALONITA-5-PIROFOSFATO.-648.- GERANILPIROFOSFATO GPP.- 649.- N,N-DIMETILGLICINA-DME.– 650.- TRIMETILGLICINA TMG.- 651..- CITOCROMO P45 OXIDASA.- 652.- ISOENZIMA 1A2 DE LA DIMETILXANTINO.-653.- PARAXANTINA EN LA LI´POLISIS EN EL PLASMA SANGUÍNEO.- 654.- TEOFILINA PARA LOS BRONQUIOS.-655.-D-PANTETENATO Y BETA-ALAMINA EN EL D-PANTOTENATO EN EL ÁCIDO PANTOTÉNICO.- 656.- SEROTENINAS EN LA RUTA DE LOS METABÓLICAS.-657.- TRIPTOFANAO Y LA RELACIÓN CON LA FENILALANINA.. ANTIDEPRESIVOS Y LA RELACIÓN CON LA RELAJACIÓN.- 658.- ANTOCIANINAS.- 659.- ÁCIDO ASCÓRBICO EN EL AAT.- 660.- SESQUITERPENOS.- 661.- SESQUITERPENOIDES.- 662.- MONOTERPENOIDES Y MEDIO.-M .-663.- FITOALEXINAS DE LOS SESQUITERPENOIDES.- 664.- paracimeno.- 665.- deterpenoly.- 666.- FARNESIL DIFOOSFATO SINTASA.-667.- CATIÓN ALÍLICO.- 668.- ADICIÓN ELECTROFÍLICA DEL IPP.- 669.- PIROFOSFATO DE FARANESILO FPP.- 670.- XANTOSINA.- 671.- FARMESOL-IPP-. 672.- NEROLIDOL-3PP.-673.- BUTANONA-METILCETONA.- 674.- FURANEOL.- 675.- OPOSITANO.- 676.- OPPOSITAIEN-1-OL.- 677.- URACIL ACETILADO.- 678.- PROLINA.- 679.- METIL-2-BUTENTIOL. 2-ISOBUTATIL-METOXIL.- 680.- AZÚCARES.- .681.- PARÉNQUIMA EMPALIZADA LIGNIFICADA.-682.- CIANOBACTERIAS EN LOS PIGMENTOS.- 683.- OXÍGENO Y DIÓXIDO DE CARBONO DE LAS LENTICELAS.- 684..-TURGENCIACONTROLADA POR LAS SALES DE POTASIO.- 685.- CERAS DE LA CATÍCULA Y SURBERINA.- 686.- COLCHICINA DE LAS EUBACTERIA Y EUCARYA.- 687.- CLOROFILAS DEL GRUPO TETRAPIRRÓLICO.-688.- BACTEREOCLOROFILAS.- 689.- CARBURANTES METABÓLICOS DE LA GLUCOSA,ÁCIDOS GRASOS Y AMINOÁCIDOS.-690.- FUNCIONES ENZIMÁTICAS DE LA BICAPA LÍPIDICA.- 691.- FUNCIONES DE LA MEMBRANA INTERNA PARA LAS PROTEINAS.- 692.- COMPLEJO NADH DESHIDROGENASA CON FLURNA FMN.- 693.- SUCCIANATO DESHIDROGENASA EN LA COENZIMA Q.- UBIQUINONO.- 694.- COMPLEJO W CITOCROMO C OXIDASA.- 695.- NUCLEÓTICO DE ADENINA TRANSLOCASA.- 696.- ADP CITOSÓLICO.- 697.- FOSFATO TRANSLOCASA CITOSÓLICO EN FOSFORILIZACIÓN OXIDATIVA.-698.- ADINILATO KINASA O CREATINA QUINASA.- 697.- CLOROFILINA.- 698.- PENTOSA FOSFOTA DEL CICLO REDUCTIVO.- 699.- NICOTINAMIDA.- 700.- ADENINA FOSFATO NADPH+H+.- 701.- RIBULOSA-1-5-BISFOSFATO RuBisCO .-702.- TRANSCETOLASA FOSFORIBULOCINASA.-703.- FRUCTUOSA-6P.- 704.- FRUCTUOSA-1,6-BP.- 705.- FOSFATASAALDOLASATRIOSAFOSFATO ISOMERASA.- .-706.- XILULOSA-5P.- 707.- DIHIDROXIAcetona -3p.-708.- ribulasa-5p.- 709.- aldolasa rU5p epimerasa.- 710.- ERITROSA-4P ,RIBOSA-5P FOSFATASA RIBOSA-5P ISOMERASATRANSCETOLASA.-711.-.- SEDOHEPTULOSA-1,7 BP.- 712.- SEDOHEPTULOSA-7P.- 713.- RUBISCO FRUCTUOSA-1,6BP FOSFATASA,SEDOHEPTULOSA.- 714.- FODFOENLPIRUVATO CARBOXILASA PEP CASE.-715..-.- PROTEINAS GLOBULARES CATALIZADORAS DE REACCIONES QUÍMICAS.- DE LOS AMINOÁCIDO.- 716.- LATEOBROMINA.- 717.- HIDROXIAMINO DE LA HIDROXILAMINA OXIAMONICO.- 718.- TRIGONELINA Y COLINA.-719.- SAPOGÉNICAS ESTEROIDALES Y ANOGÉNINA, GITOGENINA.- 720.- FENUGRINA B.- 721.- FENUGREQUINA Y SAPONINAS.- 722.- TRIGONELOSIDOS A,B Y C.- 723.- FLAVENOIDES KAEMPFEROLES QUERCITINA.- 724.- ALCALOIDES TRIGONELINA,COLINA,LECITINA.-725.- FITOSTEROLES.- 726..- GLUCÓSIDOS ESTAQUINOSA, GALACTOMANANO.- 727.-TRIGOFENOSIDOS A-G.- 728.- OLEORREPINA NO ALCANOSSESQUITERPENOS.- 729.-GALACTOMANISITE.-730.- INOSITOFOSFATODE CALCIO Y MAGNESIO.- 731.- DETEOBROMINA.-732.- ETER KÍNICO.- 733.- ALCOHOLSINAPÍLICO.- – 734..- BISABOLENO.- 735.- CARBOHIDRATOS ARABINOGALACTANO.- 736-.- OLIGOSACÁRIDOS.-737.- MANNANOS..738.- NICOTÁNICOS.-739 .- PIRIDINA.-740.- OXÍGENO SINGLETE.- 741.- cloro, el sodio, el magnesio, el azufre, el calcio, el potasio, el bromo, el estroncio, el boro y el flúor, además del oxigeno y el hidrogeno que aparecen combinados en forma de agua. El cloro y el sodio en forma de sal común, el magnesio como cloruro, bromuro y sulfato, el calcio como carbonato, etc.El almidón está constituido por dos compuestos de diferente estructura:

  • .-742.- Amilosa: Está formada por α-D-glucopiranosas unidas por centenares o miles (normalmente de 300 a 3000 unidades de glucosa) mediante enlaces α-(1 → 4) en una cadena sin ramificar, o muy escasamente ramificada mediante enlaces α-(1 → 6) . Esta cadena adopta una disposición helicoidal y tiene seis monómeros por cada vuelta de hélice. Suele constituir del 25 al 30 % del almidón.
  • .-743.-Amilopectina: Representa el 70-75 % restante. También está formada por α-D-glucopiranosas, aunque en este caso conforma una cadena altamente ramificada en la que hay uniones α-(1 → 4), como se indicó en el caso anterior, y muchos enlaces α-(1 → 6) que originan lugares de ramificación cada doce monómeros. Su peso molecular es muy elevado, ya que cada molécula suele reunir de 2.000 a 200.000 unidades de glucosa.

De todos modos, la proporción entre estos dos componentes varía según el organismo en el que se encuentre.
Los almidones de los cereales contienen pequeñas cantidades de grasas. Los lípidos asociados al almidón son, generalmente, lípidos polares, que necesitan disolventes polares tales como metanol-agua, para su extracción. Generalmente el nivel de lípidos en el almidón cereal, está entre 0,5 y 1 %. Los almidones no cereales no contienen esencialmente lípidos.
Desde el punto de vista químico, es una mezcla de dos polisacáridos muy similares, la-.742.- amilosa y la .-744.-amilopectina; contienen regiones cristalinas y no cristalinas en capas alternadas. Puesto que la cristalinidad es producida por el ordenamiento de las cadenas de amilopectina, los gránulos de .-745.-almidón céreo tienen parecido grado de cristalinidad que los almidones normales. La disposición radial y ordenada de las moléculas de almidón en un gránulo resulta evidente al observar la cruz de polarización (cruz blanca sobre un fondo negro) en un microscopio de polarización cuando se colocan los polarizadores a 90° entre sí. El centro de la cruz corresponde con el hilum, el centro de crecimiento de gránulo .Los gránulos de almidón son insolubles en agua fría, pero pueden contener agua al aumentar la temperatura, es decir los gránulos de almidón sufren el proceso denominado gelatinización . Durante la gelatinización se produce la lixiviación de la amilosa, la gelatinización total se produce normalmente dentro de un intervalo más o menos amplio de temperatura, siendo los gránulos más grandes los que primero gelatinizan.
Los diversos estados de gelatinización pueden ser determinados. Estos estados son: la temperatura de iniciación (primera observación de la pérdida de birrefrigencia), la temperatura media, la temperatura final de la pérdida de.-746.- birrefringencia (TFPB, es la temperatura a la cual el último gránulo en el campo de observación pierde su birrefringencia), y el intervalo de temperatura de gelatinización.
Al final de este fenómeno se genera una pasta en la que existen cadenas de amilosa de bajo peso molecular altamente hidratadas que rodean a los agregados, también hidratados, de los restos de los gránulos.La dextrosa es glucosa cristalizada, azúcar natural creada en losalimentos con almidón, como las frutas dulces, miel y granos, principalmente. La dextrosa se ​​extrae de estas fuentes de alimento para varios usos diferentes. Los nombres comunes de la dextrosa son azúcar de maíz, azúcar de arroz, azúcar de papa o azúcar de trigo. Desde los hospitales a las plantas de procesamiento de alimentos, la dextrosa es una parte integral de la entrega de hidratos de carbono simples para el cuerpo..-747.-La aldohexosa glucosa posee dos enantiómeros, si bien la D-glucosa es predominante en la naturaleza. En terminología de la industria alimentaria suele denominarse dextrosa (término procedente de.-748.- «glucosa dextrorrotatoria»)3 a este compuesto.. PRODUCCIÓN PAPELERA UTILIZANDO LOS RESIDUOS DE LA COSECHA DE LAS PLANTAS. RESUMEN DE LA FABRICACIÓN DEL PAPEL DE BAGAZO DE MAÍZ PARA EL EMPAQUE DE LOS ALMIDONES Y DEXTRINAS DEL MAIZ..
El proceso de la fabricación del papel, a partir del bagazo del maíz, se inicia por decirlo así a la salida del bagazo del ingenio de la producción del almidón y de la dextrina, ya que después que el bagazo sale del tren de molienda del ingenio es transportado, ya sea en granel o en pacas, a la fabrica de pulpa y papel, donde será almacenado y posteriormente procesado.
Almacenamiento: el almacenamiento del bagazo de caña de maíz, es de mucha importancia para la industria papelera, debido a que la zafra o cosecha no es en forma continua, y con el almacenamiento del bagazo o caña machacada, se puede asegurar las operaciones de la planta de celulosa en forma continua, durante el tiempo que no este trabajando el ingenio azucarero suelto; hacia el sistema de desmenuzado.
Impregnación: en donde el procedimiento de impregnación bajo condiciones de operaciones definidas, se lleva a cabo la absorción de la solución de sosa por la s fibras de bagazo de caña del maíz.
El transportador de bandas tiene instalada una báscula de medición continua, la cual marca la cantidad de fibras con la cual se alimentan a un tanque de retención. Se debe agregar cierta cantidad de agua para obtener una consistencia del 4%. Esta mezcla de fibras con agua es bombeada a una prensa de dos cilindros.
El cocimiento del bagazo de la caña del maíz, que procede de la etapa de impregnación se efectúa en fase de vapor y bajo las siguientes condiciones.

Presión del vapor. 7kg/cm Temperatura. 160°C Tiempo de retención. 20 minutosDicho conocimiento se lleva a cabo en un digestor
Luego la masa cocida es descargada en un tanque (blow tank), el cual funciona también como almacén de pulpa café. Posteriormente estas fibras son diluidas con lejía negra de las lavadoras y es bombeada en un fraccionador para separar las fibras en cortas y largas. Ambas fibras se refinan y luego vuelves a mezclarse antes de hacer la hoja de papel. Las fibras cortas rellenan los espacios vacíos entre las fibras largas y además le dan el calibre y la flexibilidad al papel ya formado.

REFIDADO DE LA MASA CELULÓSICA
La función del fraccionador antes de entrar al refinado, es separar las fibras, cuyas características físicas-mecánicas son diferentes. Como ha sido mencionado anteriormente el bagazo de caña de azúcar se descompone en tres tipos de fibras, y de los cuales cada uno de ellos necesita un tratamiento adecuado.
Para nuestro caso se hará la separación de las fibras cortas (fibras A), como también las fibras largas (fibras B), las fibras b o las fibras mal cocidas, necesitan un tratamiento adicional para uniformarlas y juntarlas posteriormente con las fibras A. La mezcla necesita un lavado anterior al proceso de blanqueo.para ello se usan los rodillos tambores espezadores. EL BLANQUEO
BLANQUEO

El blanqueo de el bagazo de la caña del maíz obtenida por diferentes métodos son susceptibles, a ser blanqueadas por una serie de etapas, como son coloración, extracción cáustica, e hipoclorito.
Para obtener la blancura deseada en le producto final, ya sea papel periódico o papel de escritura e impresión, se necesita blanquear la pulpa. De los productos para blanquear la pulpa más accesible y económico se utiliza el cloro y sus componentes, como son la sosa y la cal.
Para nuestro caso se utilizara el blanqueo con hipoclorito de calcio en dos pasos. La pulpa de alta consistencia 12%, se mezcla con una solución de hipoclorito de calcio en un mezclador y se calienta a una temperatura de 50°C con vapor directo, la pulpa del mezclador se bombea por medio de una bomba de alta consistencia a la torre de blanqueo, el tiempo aproximado es de 100 minutos, otro factor muy importante es el pH, ya que su valor puede bajar de 9,5 ni subir de 11.
El hipoclorito de calcio ataca los componentes colorantes de la pulpa y esta pasan como solubles o insolubles en agua.
La pulpa de consistencia de 12% pasa a un segundo paso de blanqueo. Este paso de blanqueo es semejante al primero, únicamente que el tiempo de retención en la torre de blanqueo #2 es mas largo Después del blanqueo se procede a entrar al proceso de formación del papel la pulpa contiene a su entrada un 98% de humedad, y la cual fluye desde la caja de alimentación(A), hacia una fina malla de alambre(C), la cual se encuentra en movimiento y a una cierta velocidad, dependiendo del tipo de papel que se vaya a fabricar. Al llegar a la tela metálica, el agua empieza a caer por efecto de la succión ejercida por los cojines aspirantes(D), como también por la acción de la gravedad. Dejando una blanda capa de fibras, a la cual se le denomina papel y es transportado por una malla, hasta otra cinta, pero esta vez es filtro (F), en donde le es absorbida un poco cantidad de agua, reduciendo así la humedad de dicha capa.
Prensas: Luego esta capa es pasada a una prensa primaria (E) y posteriormente a un juego de tres prensas húmedas (G, H, I), por compresión le extraen las partes de agua.
Seccion de secado: Después del juego de prensas, el papel pasa a un juego de tambores secadores (J), y ahora que el papel contenía solo dos veces más agua que fibras, dejándolo tan solo con una humedad de un 5%. Enseguida el papel es pasado por medio de una calandria (K), la cual le da una superficie suave y le proporciona mas rigidez.
Terminando el calandro la larga e interminable cinta de papel que emerge de la maquina es pasada por un juego de rodillos divisores y posteriormente va enrollado en grandes bobinas(M), algunas de las cuales pueden contener hasta 20km de papel.
Posteriormente, son rebobinados y cortados al tamaño deseado por el cliente, y en algunos casos el papel es cortado formando paquetes o resinas, dando así por terminado el proceso de fabricación del papel de bagazo de caña del maíz.PARA MAYORES DETALLES ESCRIBA A PAPELERA SANTA ROSA PAPEL DE BANANO. SANTAROSAPAPELBANANO.JIMDO.COM .SEA CONSCIENTE,CONSUMA RACIONALMENTE PENSANDO EN LA ECOLOGÍA..

Anuncios
Esta entrada fue publicada en Uncategorized. Guarda el enlace permanente.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s